Exact symmetries and threshold states in two-dimensional models for QCD
نویسندگان
چکیده
A bstract Two-dimensional SU( N ) gauge theory coupled to a Majorana fermion in the adjoint representation is nice toy model for higher-dimensional dynamics. It possesses multitude of “gluinoball” bound states whose spectrum has been studied using numerical diagonalizations light-cone Hamiltonian. We extend this by coupling it f flavors fundamental Dirac fermions (quarks). The extended also contains meson-like states, both bosonic and fermionic, which large- limit decouple from gluinoballs. study meson Discretized Light-Cone Quantization (DLCQ). When all are massless, we exhibit an exact $$ \mathfrak{osp} osp (1|4) symmetry algebra that leads infinite number degeneracies DLCQ approach. More generally, show many single-trace threshold degenerate with multi-trace states. These can be explained Kac-Moody current. present strong evidence additional appear continuum limit. Finally, make quarks massive while keeping massless. In case too, observe some mesons becomes continuous above certain threshold. This demonstrates quantitatively string tension vanishes massless QCD 2 without explicit four-fermion operators.
منابع مشابه
Symmetries and Special States in Two Dimensional String Theory
We use the W∞ symmetry of c = 1 quantum gravity to compute matrix model special state correlation functions. The results are compared, and found to agree, with expectations from the Liouville model. Work supported by a Harold W. Dodds Fellowship
متن کاملClassical Symmetries of Some Two-Dimensional Models
It is well-known that principal chiral models and symmetric space models in two-dimensional Minkowski space have an infinite-dimensional algebra of hidden symmetries. Because of the relevance of symmetric space models to duality symmetries in string theory, the hidden symmetries of these models are explored in some detail. The string theory application requires including coupling to gravity, su...
متن کاملInfinite-Dimensional Symmetries of Two-Dimensional Coset Models
It has long been appreciated that the toroidal reduction of any gravity or supergravity to two dimensions gives rise to a scalar coset theory exhibiting an infinite-dimensional global symmetry. This symmetry is an extension of the finite-dimensional symmetry G in three dimensions, after performing a further circle reduction. There has not been universal agreement as to exactly what the extended...
متن کاملGrassmann Variables and Exact Solutions for Two-Dimensional Dimer Models
We discuss some aspects of a new noncombinatorial fermionic approach to the two-dimensional dimer problem in statistical mechanics based on the integration over anticommuting Grassmann variables and factorization ideas for dimer density matrix. The dimer partition function can be expressed as a Gaussian fermionic integral. For regular lattices, the analytic solution then follows by passing to t...
متن کاملinfinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2021
ISSN: ['1127-2236', '1126-6708', '1029-8479']
DOI: https://doi.org/10.1007/jhep10(2021)096